RC水路橋構造計算システム

(鉄筋コンクリート水路橋構造計算システム)

Ver1.0

適用基準

〇「土地改良事業計画設計基準 設計『水路工』(H26/3)

出力例

連続支持形式 (3 区間) の計算書

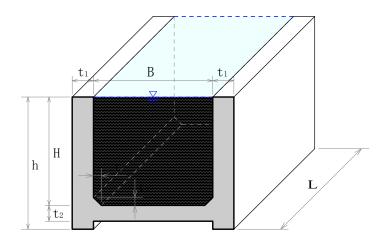
開発·販売元

(株)SIP システム お問合せ先 : 大阪事務所 (技術サービス) 〒542-0081 大阪府大阪市中央区南船場 1-18-24-501

http://www.sipc.co.jp mail@sipc.co.jp

1. 設計条件

1.1 単位体積重量

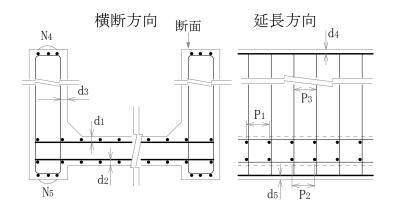

項目	記号	値	単位	備考
躯体	γ sc	24. 500	kN/m^3	
水	γw	9. 800	kN/m^3	
雪	γ sn	3. 500	kN/m³	

1.2 躯体寸法

項目	記号	値	単位	備考
側壁高	Н	2. 500	m	
内空幅	В	2. 000	m	
側壁厚	t 1	0.300	m	
底版厚	t ₂	0. 300	m	
ハンチ幅	t 4	0. 300	m	
ハンチ高	t 4'	0. 300	m	
全 高	h	3. 600	m	

延長方向支持方法	単 純 梁	0	連	続	梁

区間	引数		3						
区 間 距 離 L(m)									
No	距離	No	距離	No	距離	No	距離	No	距離
1	10.000	2	18. 000	3	10.000	4		5	


1.3 部材条件

項目	記号	値	単位	備考
許容曲げ圧縮応力度	σ _{са}	9. 00	N/mm^2	
許容せん断応力度	τа	0.45	$\mathrm{N/mm}^2$	
許容付着応力度	τ _{oa}	1. 60	N/mm²	
許容引張応力度	σ sa	157. 00	N/mm²	
ヤング係数比	n	15. 0		

許容せん断応力の計算方法	0	最大せん断	平均せん断

1.4 配筋条件

項目	記号	値	単位	備考
底版上部かぶり	d_{1}	60.0	mm	
底版下部かぶり	d ₂	70.0	mm	
側壁内側かぶり	d ₃	60.0	mm	
主桁上部かぶり	d 4	60.0	mm	
主桁下部かぶり	d 5	60.0	mm	
底版上部ピッチ	P ₁	250	mm	
底版下部ピッチ	P_2	250	mm	
側壁内側ピッチ	Р3	250	mm	
主桁上部本数	N_4	10	本	
主桁下部本数	N 5	10	本	

2. 荷重の計算

2.1 床版に作用する荷重(単位幅当たり)

・自重 $W_c = t_2 \cdot \gamma_{sc} = 0.300 \times 24.500 = 7.350 \text{ (kN/m}^2)$

・内水重 $W_{w1} = H \cdot \gamma_w = 2.500 \times 9.800 = 24.500 (kN/m^2)$

• \ddagger + $W_1 = W_c + W_{w1} = 7.350 + 24.500 = 31.850 (kN/m²)$

ここに、W₁:床版に作用する荷重(kN/m²)

γ_{sc}: 躯体の単位体積重量 (kN/m³)

γw:水の単位体積重量(kN/m³)

2.2 主桁に作用する荷重(1本当たりの単位長当たり)

・自重 $W_d = (t_1 \cdot h + t_4 \cdot t_{4'}/2) \gamma_{sc} + B \cdot W_c/2$

 $= (0.300 \times 3.600 + 0.300 \times 0.300 / 2) \times 24.500 + 2.000 \times 7.350 / 2$

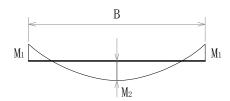
= 34.913 (kN/m)

· 内水重 $W_{w2} = (B \cdot H - t_4 \cdot t_{4'}) \gamma_{w}/2$

 $= (2.000 \times 2.500 - 0.300 \times 0.300) \times 9.800/2$

= 24.059 (kN/m)

• \Rightarrow $W_2 = W_d + W_{w2} = 34.913 + 24.059 = 58.972 (kN/m)$


ここに、 W_2 : 主桁に作用する荷重 (kN/m)

・水圧強度 $P_w = H \cdot \gamma_w = 2.500 \times 9.800 = 24.500 (kN/m^2)$

2.3 床版に作用する曲げモーメント及びせん断力

(a) 曲げモーメント

底版に作用する曲げモーメントは、次の2ケースについて計算を行い、両者の大きい方の値を採用する。

M₁ : 床版部材端曲げモーメント(kN・m/m)

M₂: 床版中央曲げモーメント(kN・m/m)

i 側壁を含めた一体構造と考えた場合

$$M_{1a} = -P_w \cdot H^2/6 = -24.500 \times 2.500^2/6$$

 $= -25.521 \text{ (kN} \cdot \text{m/m)}$

 $M_{2a} \, = \, W_1 \, \boldsymbol{\cdot} \, \, B^{\, 2} / 8 + M_{1a} \, = \, 31.\, 850 \times 2.\, 000^{2} / 8 \, + -25.\, 521$

 $= -9.596 \text{ (kN} \cdot \text{m/m)}$

ii 床版を両端固定梁と考えた場合

$$M_{1b} = -W_1 \cdot B^2/12 = -31.850 \times 2.000^2/12$$

 $= -10.617 \text{ (kN} \cdot \text{m/m)}$

 $M_{2b} = W_1 \cdot B^2/24 = 31.850 \times 2.000^2/24$

 $= 5.308 (kN \cdot m/m)$

それぞれの2ケースを比較し、大きい値を採用する。

 $M_1 = -25.521 \text{ (kN} \cdot \text{m/m)}$

 $M_2 = 5.308 \text{ (kN} \cdot \text{m/m)}$

(b) せん断力

せん断力S(kN/m)の検討は、床版端部より $t_2/2$ 離れた断面において行う。

$$S = W_1(B-t^2)/2 = 31.850 \times (2.000-0.300)/2$$

= 27.073 (kN/m)

(b) 軸方向力

床版には水圧により軸方向に引張力N(kN/m)が生じる。

$$N = -P_w \cdot H/2 = -24.500 \times 2.500/2$$

= -30.625 (kN/m)

2.4 側壁に作用する曲げモーメント及びせん断力

(a) 曲げモーメント

側壁に作用する曲げモーメントは、「i 側壁を含めた一体構造と考えた場合」の底版部材端モーメントと同値である。 $M_w = M_{la} = -25.521 \ (kN \cdot m/m)$

(b) せん断力

せん断力S(kN/m)の検討は、側壁付け根の断面において行う。

$$S_w = P_w \cdot H/2 = 24.500 \times 2.500/2$$

= 30.625 (kN/m)

2.5 主桁に作用する曲げモーメント及びせん断力

主桁を連続梁として断面力を計算する。

(a) 曲げモーメント

3連モーメント公式を用いて支点曲げモーメントを算出し、各区間ごとに最大曲げモーメントを算出する。

$$\mathbf{M}_{\text{(n)}} \cdot \mathbf{L}_{\text{(n)}} + 2\mathbf{M}_{\text{(n+1)}} \left(\mathbf{L}_{\text{(n)}} + \mathbf{L}_{\text{(n+1)}} \right) + \mathbf{M}_{\text{(n+2)}} \cdot \mathbf{L}_{\text{(n+1)}} \; = \; -6 \, (\mathbf{R}_{\, B(n)'} + \mathbf{R}_{\, B(n+1)'})$$

 $R_{B(n)}$, = $W_2 \cdot L_{(n)}^3 / 24$

 $R_{B(n+1)}$, = $W_2 \cdot L_{(n+1)}$ ³/24

したがって式の右辺は、 $-W_2 \cdot (L_{(n)}^3 + L_{(n+1)}^3)/4$ となる。

また、連続梁の始終点の曲げモーメントは0であるため、以下の式として表すことができる。

$$2 \times (10.000 + 18.000) \times M_2 + 18.000 \times M_3 = -58.972 \times (10.000^3 + 18.000^3) / 4$$

 $18.000 \times M_2 + 2 \times (18.000 + 10.000) \times M_3 = -58.972 \times (18.000^3 + 10.000^3) / 4$

上記3連モーメント公式を解くと、各支点の曲げモーメントは次のように求まる。

 $M_1 = 0.000 \text{ (kN} \cdot \text{m)}$

 $M_2 = -1,361.138 \text{ (kN} \cdot \text{m)}$

 $M_{\text{3}}\,=\,$ -1,361.138 (kN $\boldsymbol{\cdot}$ m)

 $\mathbf{M}_4 = 0.000 \, (\mathrm{kN} \cdot \mathrm{m})$

さらに、各スパンに上記の支点曲げモーメントを部材端曲げモーメントとして最大曲げモーメントを算出する。

$$\chi_{(n)} = L_{(n)}/2 - (M_{(n)} - M_{(n+1)})/(W_2 \cdot L_{(n)})$$

$$\mathbf{M}_{\text{max}(\text{n})} \ = \ \mathbf{W}_2 \boldsymbol{\cdot} \ \chi_{\text{(n)}} \left(\ L_{\text{(n)}} - \chi_{\text{(n)}} \right) \diagup 2 + \mathbf{M}_{\text{(n)}} - \left(\mathbf{M}_{\text{(n)}} - \mathbf{M}_{\text{(n+1)}} \right) \ \chi_{\text{(n)}} \diagup L_{\text{(n)}}$$

・スパン No. 1 L_1 =10.000 (m) , M_1 =0.000 (kN・m) , M_2 =-1,361.138 (kN・m)

$$\chi_{1} = 10.000/2 - (0.000 - (-1,361.138))/(58.972 \times 10.000) = 2.692 \text{ (m)}$$

 $M_{\text{max1}} = 58.972 \times 2.692 \times (10.000 - 2.692) / 2 + 0.000 - (0.000 - (-1, 361.138)) \times 2.692 / 10.000$ = 213.664 (kN·m)

・スパン No. 2 $L_2=18.000$ (m) , $M_2=-1,361.138$ (kN・m) , $M_3=-1,361.138$ (kN・m)

 $\chi_2 = 18.000/2 - (-1, 361.138 - (-1, 361.138))/(58.972 \times 18.000) = 9.000 \text{ (m)}$

 $M_{\text{max}2} = 58.972 \times 9.000 \times (18.000 - 9.000) / 2 + (-1,361.138) - (-1,361.138 - (-1,361.138)) \times 9.000 / 18.000$ = 1,027.228 (kN·m)

 $\chi_3 = 10.000/2 - (-1,361.138 - 0.000)/(58.972 \times 10.000) = 7.308$ (m)

 $M_{\text{max}3} = 58.972 \times 7.308 \times (10.000 - 7.308) / 2 + (-1,361.138) - (-1,361.138 - 0.000) \times 7.308 / 10.000$ = 213.664 (kN·m)

(b) せん断力

主桁のせん断力は、支点からh/2離れた位置で検討する。

 $S = W_2 \cdot W_2 (L - 2\chi) / 2 - (M_L - M_R) / L$

ここに、χ: 照査位置 (m)

```
・スパン No.1 L_1=10.000 (m) , M_1=0.000 (kN・m) , M_2=-1,361.138 (kN・m) ・ h /2の位置
```

$$S_{\,\text{Ll}} \ = \ 58.\,972 \times (10.\,000 - 2 \times 1.\,800) \, \diagup 2 - (0.\,000 - (-1,\,361.\,138)) \, \diagup 10.\,000$$

= 52.597 (kN)

 $M_{L1} = 58.972 \times 1.800 \times (10.000 - 1.800) / 2 + 0.000 - (0.000 - (-1,361.138)) \times 1.800 / 10.000$ = 190.209 (kN·m)

L-h/2の位置

 $S_{R1} = 58.972 \times (10.000 - 2 \times 8.200) / 2 - (0.000 - (-1, 361.138)) / 10.000$

 $= -324.824 \text{ (kN} \cdot \text{m)}$

 $M_{R1} = 58.972 \times 8.200 \times (10.000 - 8.200) / 2 + 0.000 - (0.000 - (-1,361.138)) \times 8.200 / 10.000$

 $= -680.919 \text{ (kN} \cdot \text{m)}$

- ・スパン No. 2 $L_2=18.000$ (m) , $M_2=-1,361.138$ (kN・m) , $M_3=-1,361.138$ (kN・m)
- ・ h/2の位置

 $S_{L2} = 58.972 \times (18.000 - 2 \times 1.800) / 2 - (-1,361.138 - (-1,361.138)) / 18.000$

= 424.598 (kN)

 $\begin{array}{lll} M_{L2} & = 58.\,972 \times 1.\,800 \times (18.\,000 - 1.\,800) \, \diagup \, 2 + (-1,\,361.\,138) - (-1,\,361.\,138 - (-1,\,361.\,138)) \, \times 1.\,800 \, \diagup \, 18.\,000 \\ & = -501.\,326 \ (kN \cdot m) \end{array}$

L-h/2の位置

 $S_{R2} = 58.972 \times (18.000 - 2 \times 16.200) / 2 - (-1,361.138 - (-1,361.138)) / 18.000$

 $= -424.598 \text{ (kN} \cdot \text{m)}$

 $\mathbf{M}_{\mathbb{R}^2} \ = \ 58.\ 972 \times 16.\ 200 \times (18.\ 000 - 16.\ 200) \diagup 2 + (-1,\ 361.\ 138) - (-1,\ 361.\ 138 - (-1,\ 361.\ 138)) \times 16.\ 200 \diagup 18.\ 000$

 $= -501.326 \text{ (kN} \cdot \text{m)}$

- ・スパン No. 3 L_3 =10.000 (m) , M_3 =-1,361.138 (kN・m) , M_4 =0.000 (kN・m)
- h/2の位置

 $S_{L3} = 58.972 \times (10.000 - 2 \times 1.800) / 2 - (-1,361.138 - 0.000) / 10.000$

= 324.824 (kN)

 $M_{L3} \ = \ 58.\ 972 \times 1.\ 800 \times (10.\ 000 - 1.\ 800) \ / \ 2 + (-1,\ 361.\ 138) - (-1,\ 361.\ 138 - 0.\ 000) \times 1.\ 800 \ / \ 10.\ 000$

 $= -680.919 \text{ (kN} \cdot \text{m)}$

L-h/2の位置

 $S_{R3} = 58.972 \times (10.000 - 2 \times 8.200) / 2 - (-1,361.138 - 0.000) / 10.000$

 $= -52.597 (kN \cdot m)$

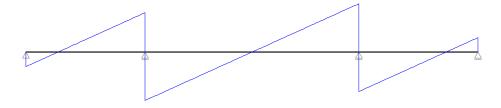
 $M_{RS} = 58.972 \times 8.200 \times (10.000 - 8.200) / 2 + (-1,361.138) - (-1,361.138 - 0.000) \times 8.200 / 10.000$

 $= 190.209 (kN \cdot m)$

2.6 応力集計

各スパンの中から最大値を用いて部材の検討を行う。

 $M_{max} = 1,027.228 \text{ (kN} \cdot \text{m)}$


 $S_{h/2} = 424.598 \text{ (kN)}$

 $M_{\text{h/2}}~=~\text{-501.326}~(\text{kN}\cdot\text{m})$

 \mathbf{M}_{omax} = -1,361.138 (kN • m)

2.7 主桁部応力図

・せん断力図

・曲げモーメント図

3. 必要鉄筋量の算出

3.1 係数

断面算定に用いる場合の係数ko,joは次の値を用いる。

$$k_0 = 1/(1+\sigma \text{ sa/(n} \cdot \sigma_{ca})) = 1/(1+157.00/(15.0\times9.00)) = 0.462329$$

$$j_0 = 1 - k_0/3 = 1 - 0.462329/3 = 0.845890$$

3.2 底版

底版部の計算は、内水圧による引張方向軸力考慮する。

(a) 底版端部

$$h = t_2 = 300.0 \text{ (mm)}$$

$$d = h - d_1 = 300.0 - 70.0 = 230.0$$
 (mm)

$$e = M/N = 25,521,000/30,625 = 833.339 (mm)$$

$$0.5h - d_2 = 0.5 \times 300.0 - 70.0 = 80.0$$
 (mm)

$$M_1 = M-N (d-0.5h) = 25,521,000-30,625 \times (230.0-0.5 \times 300.0)$$

= 23,071,000 (N·mm)

$$M_2 = 0.5 \,\sigma_{ca} \cdot k_0 \cdot j_0 \cdot b \cdot d^2 = 0.5 \times 9.00 \times 0.462329 \times 0.845890 \times 1,000.0 \times 230.0^2$$

= 93,096,470 (N·mm)

$$e > 0.5h - d_2$$
 しかも $M_1 \le M_2$ のためケース $2 - A$ となる。

$$A_{s'} = 0$$
 (圧縮鉄筋不要)

$$A_s = M_1/(\sigma_{sa} \cdot j_0 \cdot d) + N/\sigma_{sa}$$

$$= 23,071,000/(157.00\times0.845890\times230.0) +30,625/157.00$$

$$= 950.37 \, (mm^2)$$

(b) 底版中央部

$$h = t_2 = 300.0 \text{ (mm)}$$

$$d = h - d_2 = 300.0 - 60.0 = 240.0$$
 (mm)

$$e = M/N = 5,308,000/30,625 = 173.322 (mm)$$

$$0.5h - d_1 = 0.5 \times 300.0 - 60.0 = 90.0$$
 (mm)

$$M_1 = M - N (d - 0.5h) = 5,308,000 - 30,625 \times (240.0 - 0.5 \times 300.0)$$

$$= 2,551,750 \text{ (N} \cdot \text{mm)}$$

$$M_2 = 0.5 \sigma_{ca} \cdot k_0 \cdot j_0 \cdot b \cdot d^2 = 0.5 \times 9.00 \times 0.462329 \times 0.845890 \times 1,000.0 \times 240.0^2$$

= 101,367,801 (N·mm)

$$e > 0.5h - d_1$$
 しかも $M_1 \le M_2$ のためケース $2 - A$ となる。

$$A_{s'} = 0$$
 (圧縮鉄筋不要)

$$A_s = M_1/(\sigma_{sa} \cdot j_0 \cdot d) + N/\sigma_{sa}$$

$$= 2,551,750/(157.00\times0.845890\times240.0)+30,625/157.00$$

$$= 275.12 \text{ (mm}^2\text{)}$$

3.3 側壁

側壁部の計算は、内水圧によって生じる側壁内面の引張曲げモーメントによって計算する。

$$h = t_1 = 300.0 \text{ (mm)}$$

$$d = h - d_3 = 300.0 - 60.0 = 240.0$$
 (mm)

$$A_s = M/(\sigma_{sa} \cdot j_0 \cdot d) = 25,521,000/(157.00 \times 0.845890 \times 240.0)$$

= 800.71 (mm²)

3.4 主桁

(a) 主桁端部

$$h = h = 3,600.0 \text{ (mm)}$$

$$d = h - d_4 = 3,600.0 - 60.0 = 3,540.0$$
 (mm)

$$A_s = M/(\sigma_{sa} \cdot j_0 \cdot d) = 1,361,137,514/(157.00 \times 0.845890 \times 3,540.0)$$

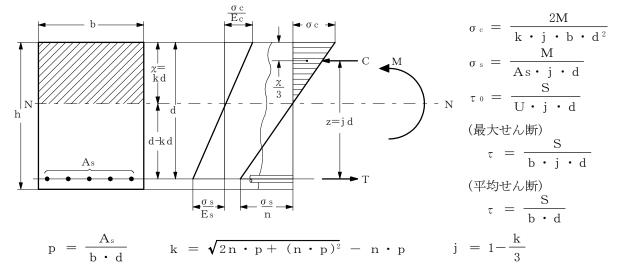
$$= 2,895.24 \text{ (mm}^2\text{)}$$

(b) 主桁中央部

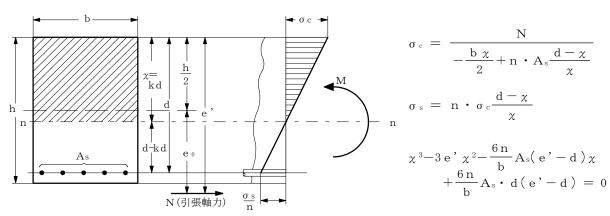
h = h = 3,600.0 (mm)

 $d = h - d_5 = 3,600.0-60.0 = 3,540.0$ (mm)

 $A_{\text{s}} \; = \; M \diagup (\; \sigma_{\,\text{sa}} \; \cdot \; \; j_{\,\,0} \; \cdot \; \; d \,) \; = \; 1,027,228,000 \diagup (157.00 \times 0.845890 \times 3,540.0)$


 $= 2, 184.99 \text{ (mm}^2\text{)}$

3.5 必要鉄筋量の集計


項目	必要鉄筋量 (mm²)	本数(本)	呼び径	鉄筋量(mm²)	周	長(mm)
底版上部	950. 37	4.00	D19	1146. 0		240.0
底版下部	275. 12	4.00	D10	285. 3		120.0
側壁内側	800.71	4. 00	D19	1146. 0		240.0
主桁上部	2895. 24	10.00	D22	3871.0		700.0
主桁下部	2184. 99	10.00	D19	2865. 0		600.0

4. 部材計算

4.1 算出公式

曲げモーメントのみが作用する部材

曲げモーメントと引張軸力が作用する部材

4.2 応力計算表

	底版端部	底版中央	側壁付根	主桁 h/2	主桁中央	主桁端部
断 曲げモーメント M kN・r	-25. 521	5. 308	-25. 521	-501. 326	1, 027. 228	-1, 361. 138
m m m n kN	-30. 625	-30. 625	0.000	0.000	0.000	0.000
カ せん断力 S kN	27. 073	0.000	30. 625	424. 598	0.000	
部 材 幅 b mm 材 部 材 原 h mm	1,000	1, 000	1, 000	300	300	300
材 部 材 厚 h mm	300	300	300	3,600	3,600	3, 600
引張側 鉄筋かぶり d ₂ mm	70.000	60.000	60.000	60.000	60.000	60.000
配 筋 圧縮側 鉄筋かぶり d ₁ mm	60. 000	70.000	0.000	0.000	0.000	0.000
計 引張側 鉄筋@ピッチ、鉄筋×本数	D19@250	D10@250	D19@250	$D22 \times 10$	D19×10	D22×10
圧縮側 鉄筋@ピッチ	D10@250	D19@250				
鉄筋断面積 As mm ²	1, 146. 0	285. 3	1, 146. 0	3, 871. 0	2, 865. 0	3, 871. 0
_ 鉄 筋 周 長 U mm	240. 0	120.0	240.0	700.0	600.0	700.0
有効部材厚 d mm	230. 0	240.0	240.0	3, 540. 0	3, 540. 0	3, 540. 0
ヤング係数比 n	15.0	15.0	15.0	15.0	15. 0	15. 0
鉄 筋 比 p	0. 00498	0. 00119	0.00477	0.00365	0.00270	0.00365
係 Nの中心からの距離 e ₀ mm	-833. 339	-173. 322	0.000	0.000	0.000	0.000
Nの圧縮縁からの距離 e, mm	-983. 339	-323. 322	0.000	0.000	0.000	0.000
数中立軸の位置 χ	66. 395	22. 174	75. 259	992. 970	873. 955	992. 970
中立軸比 k	0. 288680	0. 092390	0. 313580	0. 280500	0. 246880	0. 280500
応力軸比 j	0. 903770	0. 969200	0.895470	0.906500	0. 917710	0. 906500
曲げ圧縮応力度 [9.00] σ。 N/mm	3. 34	0. 99	3. 16	1. 05	2. 41	2.85
計算 引張応力度 [157.00] σ _s N/mm	123. 56	145. 73	103. 63	40. 36	110. 37	109. 58
計 引 張 応 力 度 [157.00] σ _s N/mm 結 果 せん断応力度 [0.45] τ N/mm	0.13	0.00	0.14	0. 44	0.00	
付着応力度 [1.60] τ ₀ N/mm	0.54	0.00	0. 59	0. 19	0.00	
判 定	ОК	ОК	ОК	ОК	ОК	ОК

底版及び側壁は、単位m当たりでの計算。