スラスト対策工設計システム

<u>Ver2.4</u>

適用基準

- 土地改良事業計画設計基準:設計「パイプライン」(H21/3)
- 設計基準「パイプライン」SI 単位系移行に関する参考資料

出力例

開発・販売元

(株)SIP システム お問合せ先 : 大阪事務所 (技術サービス) 〒542-0081 大阪府大阪市中央区南船場 1-18-24-501

TEL: 06-6125-2232 FAX: 06-6125-2233

http://www.sipc.co.jp mail@sipc.co.jp

目 次

1	表題		2
2	使用管积	種	2
3	荷重条件	件	
	3. 1	埋戻し土	2
	3. 2	設計水圧	
	3.3	e - 12 - 72/min	
	3. 4	安全率	2
4	検討断回	面	
	4. 1	新規断面1 (屈曲部)	
	4.2	新規断面2 (分岐部)	
	4.3	新規断面3 (弁栓部)	4
	4.4	新規断面4 (T字管)	5
	4. 5	新規断面5 (片落ち部)	5

1 表題

新規データ1

2 使用管種

ダクタイル鋳鉄管φ1100(D1, K形)

管厚 18.0 (mm)

外径 1144.0 (mm) , 内径 1108.0 (mm)

モルタルライニング あり

ライニング厚 10.0 (mm)

管体の単重 70.0 (kN/m^3) モルタルの単重 21.0 (kN/m^3) 管体のヤング係数 160.0 \times 10 6 (kN/m^2)

3 荷重条件

3.1 埋戻し土

 埋戻し土の単位体積重量
 w
 20.0 (kN/m²)

 埋戻し土の水中単位体積重量
 w'
 10.2 (kN/m³)

 内部摩擦角
 φ
 30.0 (°)

 水の単位体積重量
 w0。
 9.8 (kN/m³)

 管内水の単位体積重量
 w0。
 9.8 (kN/m³)

 コンクリートの単位体積重量
 γ。
 23.0 (kN/m³)

3.2 設計水圧

設計水圧 H 0.300 (MPa)

3.3 その他の定数

管側面と土の摩擦係数 μ 0.50 土とコンクリートの摩擦係数 μ 0.50 曲面の受働土圧の補正係数 F 0.65 管の線膨張率 α 1.15×10⁻⁵

3.4 安全率

	スラスト力の検討 (裸 管)	構造物の設計
滑 動	1.50	1.50
浮 上	1.20	1.20
沈 下	1.20	1.00

4 検討断面

4.1 新規断面1 (屈曲部)

使用管種

ダクタイル鋳鉄管φ1100(D1, K形)

管厚 18.0 (mm)

外径 1144.0 (mm) , 内径 1108.0 (mm)

 上流側継手までの距離
 L1
 0.640
 (m)

 下流側継手までの距離
 L2
 0.640
 (m)

 曲がり中心半径
 R
 0.600
 (m)

 水平曲がり角度
 日
 45.0
 (°)

 管上流側と水平のなす角
 月
 45.0
 (°)

 地表面から屈曲点までの深さ
 H2
 3.200
 (m)

 地下水位
 H2
 5.1
 1.000
 (m)

 管内平均流速
 V
 0.800
 (m/sec)

 管の重量
 W2
 6.30
 (kN)

 管内水重
 V
 0.11.49
 (kN)

 管底面の地盤の許容支持力度
 0.7
 100.00
 (kN/m²)

設計水圧が作用する断面積 外径

設計水圧 H 0.150 (MPa)

スラスト対策工: スラストブロック②

スラストブロックの寸法 (m)

L_1	2.000	B ₁	0.700	H ₁	1.700
L_2		B_2	1.800	H_2	1.500
L_3		B_3		H ₃	1. 200
L_4					

管の重量 20.39 (kN) 管内水重 37.19 (kN)

滑動検討時のスラスト鉛直分力 考慮しない

4.2 新規断面2(分岐部)

上流側使用管種

ダクタイル鋳鉄管φ1100(D1, K形)

管厚 18.0 (mm)

外径 1144.0 (mm) , 内径 1108.0 (mm)

下流側使用管種

ダクタイル鋳鉄管φ1100(D1, K形)

管厚 18.0 (mm)

外径 1144.0 (mm) , 内径 1108.0 (mm)

分岐管使用管種

ダクタイル鋳鉄管φ800(D1, K形)

管厚 13.5 (mm)

外径 836.0 (mm) , 内径 809.0 (mm)

上流側継手までの距離 L₁ 0.640 (m) 下流側継手までの距離 L_2 1.500 (m) 分岐管継手までの距離 L_3 1.500 (m) L₄ 0.600 (m) 管の寸法 L₅ 0.400 (m) θ 45.0 (°) 分岐角度 $Q_1 = 0.450 \text{ (m}^3/\text{s)}$ 上流側流量 下流側流量 $Q_2 = 0.200 \text{ (m}^3/\text{s)}$ 地表面から管中心までの深さ H。 3.200 (m) H_w G. L. - 1.000 (m) W_D 13.07 (kN) 管の重量 管内水重 Ww 23.70 (kN) 管底面の地盤の許容支持力度 $\sigma_{\rm rv}100.00~(kN/m^2)$

4.3 新規断面3(弁栓部)

使用管種

設計水圧

ダクタイル鋳鉄管φ1100(D1, K形)

管厚 18.0 (mm)

外径 1144.0 (mm) , 内径 1108.0 (mm)

 地表面から管中心までの深さ
 Hack
 3.200 (m)

 管体の軸方向許容圧縮応力度
 σ a 168.00 (N/mm²)

 コンクリートの許容押抜きせん断応力度
 τ a 0.25 (N/mm²)

 スティフナーの許容せん断応力度
 τ ta 0.30 (N/mm²)

 せん断力を受けるコンクリート厚
 d 300.0 (mm)

 スティフナー厚
 t 45.0 (mm)

 スティフナー周長
 bp 450.0 (mm)

 設計水圧
 H 0.300 (MPa)

H 0.300 (MPa)

スラスト対策工: 離脱防止継手による接合

安全率 S₀ 1.50

4.4 新規断面4(T字管)

上流側使用管種

ダクタイル鋳鉄管φ1100(D1, K形)

管厚 18.0 (mm)

外径 1144.0 (mm) , 内径 1108.0 (mm)

分岐管使用管種

ダクタイル鋳鉄管φ1100(D1, K形)

管厚 18.0 (mm)

外径 1144.0 (mm) , 内径 1108.0 (mm)

本管上流側継手までの距離 L₁ 0.640 (m) 本管下流側継手までの距離 L₂ 0.640 (m) 枝管継手までの距離 L₃ 1.200 (m) 地表面から管中心までの深さ H₆ 4.000 (m) 地下水位 H₇ G.L. - 1.200 (m) 設計水圧 H 0.300 (MPa)

スラスト対策工: 離脱防止継手による接合

安全率 S_0 1.50 単管 1 本の長さ L_p 5.500 (m)

4.5 新規断面5 (片落ち部)

上流側使用管種

ダクタイル鋳鉄管φ1100(D1, K形)

管厚 18.0 (mm)

外径 1144.0 (mm) , 内径 1108.0 (mm)

下流側使用管種

ダクタイル鋳鉄管φ600(D1, K形)

管厚 11.0 (mm)

外径 630.8 (mm) , 内径 608.8 (mm)

地表面から管中心までの深さ H_c 1.600 (m)

管の寸法 L_1 2.100 (m)

L₂ 0.640 (m)

L₃ 0.400 (m)

地下水位 H_w G.L. - 1.000 (m) 管の重量 W_p 12.39 (kN) 管内水重 W_w 22.43 (kN) 管底面の地盤の許容支持力度 σ₁₇100.00 (kN/m²)

設計水圧 H 0.300 (MPa)

スラスト対策工: 離脱防止継手による接合

安全率 S₀ 1.50

目 次

1	新規断	面13
	1. 1	設計条件3
	1.2	設計断面4
	1. 3	スラスト力の算出4
	1.4	水平曲がりに伴う滑動に対する検討6
	1.5	鉛直曲がりに伴う滑動に対する検討7
	1.6	浮上に対する検討8
	1.7	沈下に対する検討9
	1.8	スラストブロックの計算10
		1.8.1 形状寸法図10
		1.8.2 スラスト力10
		1.8.3 スラストブロック底面に加わる全荷重10
		1.8.4 スラストブロック底面に加わる全荷重(沈下検討用)10
		1.8.5 スラストブロックに働く浮力11
		1.8.6 水平曲がりによるスラストブロックの滑動12
		1.8.7 鉛直曲がりによるスラストブロックの滑動13
		1.8.8 浮上に対する検討14
		1.8.9 沈下に対する検討15
2	新規断	面2
	2. 1	設計条件
	2. 2	設計断面17
	2. 3	スラスト力の算出17
	2.4	滑動に対する検討18
3	新規紙	面3
	3. 1	- 設計条件
	3. 2	スラスト力の算出
	3. 3	管体応力の検討
	3. 4	スティフナー固定部の照査
		スティフナー溶接部の検討
	3. 6	一体化長さの計算
4	立に 4月 座に	
4		面4
	4. 1	設計条件
	4. 2 4. 3	設計断囲
		スフスト刀の鼻田
	4. 4	宿動に対する検討
	4. 5	- 体化長さの計算
		4.5.1 計算式
5		面5
	5. 1	設計条件
	5. 2	設計断面
	5.3	スラスト力の算出27

5.4	骨動に対する検討28	3
5. 5	-体化長さの計算29)

1 新規断面1

1.1 設計条件

準拠指針: 水道施設設計指針 2012 平成24年7月 日本水道協会

スラスト形式: 屈曲部

管 種: ダクタイル鋳鉄管φ1100(D1, K形)

外径 D_c=1144.0 (mm) , 管厚 T=18.0 (mm)

曲がり中心半径: 0.600 (m) 上流側継ぎ手までの管長: 0.640 (m) 下流側継ぎ手までの管長: 0.640 (m) 屈曲角度 水平屈曲角度: 45.0 (°) 鉛直屈曲角度: 45.0 (°)

合成屈曲角度: 60.0 (°) 地表面から屈曲点までの深さ:3.200 (m) 地下水位 G.L. - 1.000 (m)

設計水圧: H = 0.150 (MPa) = 150.00 (kN/m²)

管内平均流速: 0.800 (m/s)

土の内部摩擦角: 30.0 (°) 管底面地盤の許容支持力度: 100.0 (kN/m²)

単位体積重量 埋戻し土: 20.00 (kN/m³)

地下水: 9.80 (kN/m³) 管内水: 9.80 (kN/m³) コンクリート: 23.00 (kN/m³)

1.2 設計断面

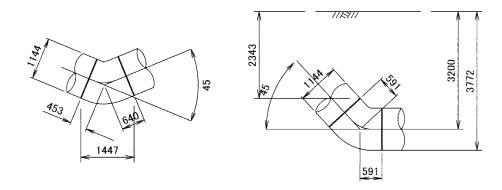


図-1.1 寸法図

1.3 スラストカの算出

スラスト力は式(1)により求める。

$$P' = 2 \cdot H \cdot a_{c} \cdot \sin \frac{\theta}{2} + \frac{2a \cdot w_{0} \cdot V^{2}}{g} \cdot \sin \frac{\theta}{2}$$
(1)

ここで、 P': スラスト力 (kN)

H: 設計水圧 150.0 (kN/m²) a_c: 設計水圧が作用する範囲の断面積 a_c=π/4×1.1440²= 1.0279 (m²)

θ: 屈曲角度 (°)

a : 設計水圧が作用する断面積 $a=\pi/4\times 1.\,1080^2=\,0.\,9642~(m^2)$

 w_0 : 管内水の単位体積重量 9.80 (kN/m^3) V : 管内平均流速 0.800 (m/s) g : 重力の加速度 9.80 (m/s)

水平曲がりによるスラスト力

水平屈曲角度 θ = 45.0 (°)

$$P' = 2 \times 150.0 \times 1.0279 \times \sin \frac{45.0}{2}$$

$$+\frac{2\times0.9642\times9.8\times0.800^{2}}{9.8}\times\sin\frac{45.0}{2}$$
 = 118.48(kN)

鉛直曲がりによるスラスト力

鉛直屈曲角度 θ = 45.0 (°)

$$P' = 2 \times 150.0 \times 1.0279 \times \sin \frac{45.0}{2}$$

$$+\frac{2\times0.9642\times9.8\times0.800^{2}}{9.8}\times\sin\frac{45.0}{2} = 118.48 \text{ (kN)}$$

スラスト力の水平分力

$$P_h = p' \cdot \sin(\theta/2 \pm \beta) = 118.48 \times \sin\left(\frac{45.0}{2} + 0.0\right) = 45.34 \text{ (kN)}$$

ただし、 β : 上下流の管路のうち、水平に近いほうの管路が水平面となす角。 なお、上下流の管路が水平面の異なる側にあるとき正、 同じ側にあるときを負とする。

スラスト力の鉛直分力(下向き)

$$P_v = p' \cdot \cos\left(\frac{\theta}{2} \pm \beta\right) = 118.48 \times \cos\left(\frac{45.0}{2} + 0.0\right) = 109.46 \text{ (kN)}$$

1.4 水平曲がりに伴う滑動に対する検討

管の水平曲がりに伴う滑動は式(2)~(6)により検討する。

$$R_{h} \ge S \cdot P' \qquad \cdots \cdots (2)$$

(地下水位が管底より低い場合)

$$R_{h} = F \cdot \frac{1}{2} \cdot K_{P} \cdot B_{b} \cdot w \cdot (H_{2}^{2} - H_{1}^{2}) \qquad \cdots \cdots (3)$$

(地下水位が管頂より高い場合)

$$R_{h} = F \cdot \frac{1}{2} \cdot K_{p} \cdot B_{b} \cdot \left\{ w (H_{2}^{2} - H_{1}^{2}) - (w - w') (H_{2} - H_{w})^{2} \right\}$$
(5)

$$K_p = \tan^2\left(45 + \frac{\phi}{2}\right)$$
(6)

ここで、R_b: 水平方向抵抗力(管背面の受働土圧) (kN)

P': スラストカ 118.48 (kN) S: 安全率 1.50

F: 曲面の受働土圧の補正係数 0.65

w: 土の単位体積重量 20.00 (kN/m³)

B_b: 管背面の幅 1.447 (m)

H₁: 地表面から管頂面までの深さ 2.628 (m)

H₂: 地表面から管底面までの深さ 3.772 (m)

H_w: 地下水面までの深さ 1.000 (m)

K_P: 受働土圧係数

φ: 土の内部摩擦角 30.0 (°)

$$K_{p} = \tan^{2}\left(45 + \frac{30.00}{2}\right) = 3.000$$

R_h =0.65
$$\times \frac{1}{2} \times 3.000 \times 1.447$$

$$\times$$
 { 10. 20 × (3. 772 2 -2. 628 2) +2 × (20. 00-10. 20) × 1. 000 × (3. 772-2. 628) }

= 137.01(kN)

 $S \cdot P' = 1.50 \times 118.48 = 177.72 (kN) > R_h = 137.01 (kN)$

よって、滑動に対して対策が必要である。

1.5 鉛直曲がりに伴う滑動に対する検討

管の鉛直曲がりに伴う滑動は式(7)~(11)により検討する。

$$R_{h} \ge S \cdot P_{h} \qquad \cdots \cdots (7)$$

(地下水位が管底より低い場合)

$$R_{h} = F \cdot \frac{1}{2} \cdot K_{P} \cdot B_{b} \cdot w \cdot (H_{2}^{2} - H_{1}^{2}) \qquad \cdots (8)$$

(地下水位が管頂より高い場合)

(その他の場合)

$$R_{h} = F \cdot \frac{1}{2} \cdot K_{p} \cdot B_{b} \cdot \left\{ w \left(H_{2}^{2} - H_{1}^{2} \right) - \left(w - w' \right) \left(H_{2} - H_{w} \right)^{2} \right\}$$
(10)

$$K_{p} = \tan^{2}\left(45 + \frac{\phi}{2}\right) \qquad \cdots \cdots \cdots (11)$$

ここで、R_b: 水平方向抵抗力(管背面の受働土圧) (kN)

Ph: スラスト力(下向き) 45.34 (kN)

F: 曲面の受働土圧の補正係数 0.65

w: 土の単位体積重量 20.00 (kN/m³) 10.20 (kN/m³) w': 土の水中単位体積重量

1.1440 (m)

B_b: 管背面の幅 B_b=D_c H₁: 地表面から管頂面までの深さ 2.343 (m)

H₂: 地表面から管底面までの深さ 3.772 (m)

Hw: 地下水面までの深さ 1.000 (m)

K_P: 受働土圧係数

30.0 (°) φ: 土の内部摩擦角

$$K_P = \tan^2\left(45 + \frac{30.00}{2}\right) = 3.0000$$

$$R_h = 0.65 \times \frac{1}{2} \times 3.000 \times 1.144$$

$$\times \{ 10.20 \times (3.772^2 - 2.343^2) + 2 \times (20.00 - 10.20) \times 1.000 \times (3.772 - 2.343) \}$$

= 130.66(kN)

$$S \cdot P_h = 1.50 \times 45.34 = 68.01 (kN) \le R_h = 130.66 (kN)$$

よって、滑動に対して安全である。

1.6 浮上に対する検討

管の浮上に対する検討は式(12)~(15)により行う。

$$\mathbf{R}_{\mathbf{v}} + \mathbf{W} - \mathbf{U} \; \geq \; \mathbf{S} \cdot \mathbf{P}_{\mathbf{v}} \qquad \qquad \cdots \cdots (12)$$

(地下水位が管底より低い場合)

$$R_{v} = \frac{1}{2} \cdot L \cdot \mu \cdot w \cdot (H_{2}^{2} - H_{1}^{2}) \cdot \tan^{2} \left(45 - \frac{\phi}{2}\right)$$
.....(13)

(地下水位が管頂より高い場合)

$$R_{v} = \frac{1}{2} \cdot L \cdot \mu \cdot \tan^{2} \left(45 - \frac{\phi}{2} \right)$$

$$\cdot \left\{ \text{ w' (H } \begin{smallmatrix} 2 \\ 2 \end{smallmatrix} \right. \left. \text{ H } \begin{smallmatrix} 2 \\ 1 \end{smallmatrix} \right. \left. \text{) + 2 (w-w') H }_{\text{w}} \left(\text{H } _{2} \text{ -H }_{1} \right) \right. \right\} \\ \cdots \cdots \cdots (14)$$

(その他の場合)

$$R_{v} = \frac{1}{2} \cdot L \cdot \mu \cdot \tan^{2} \left(45 - \frac{\phi}{2} \right)$$

$$\cdot \left\{ w(H_{2}^{2} - H_{1}^{2}) - (w-w') (H_{2} - H_{w})^{2} \right\}$$
.....(15)

ここで、Rv: 管側面の主働土圧による摩擦抵抗力 (kN)

Pv: スラスト力の鉛直分力(上向き) -109.46 (kN)

w: 土の単位体積重量 20.00 (kN/m³)

w': 土の水中単位体積重量 10.20 (kN/m³)

L: 管側面の摩擦を受ける長さ

 $2 \times 1.093 = 2.185$ (m)

μ: 管側面と土の摩擦係数 0.50

H₁: 地表面から管頂面までの深さ 2.343 (m)

H₂: 地表面から管底面までの深さ 3.772 (m)

H_w: 地表面から地下水面までの深さ 1.000 (m)

φ: 土の内部摩擦角 30.0 (°)

W: 管底面に加わる全荷重 (kN)

 $\mathbb{W}{=}\mathbb{W}_1{+}\mathbb{W}_2$

W₁: 管上の埋戻し土による鉛直土圧(kN)

 $W_1 = w \cdot H_m \cdot A = 20.0 \times 2.485 \times 1.250 = 62.13$ (kN)

W2: 曲管類の重量および管内水重 (kN)

 $W_2 = 6.30+11.49 = 17.78$ (kN)

H_m: 地表面からの平均深さ 2.485 (m)

A: 管底面積

 $A = (0.640 \times \cos 45.0 + 0.640 \times \cos 0.0) \times 1.1440 = 1.250 \ (\text{m}^2)$

U: 管の浮力 (kN)

 $U = \pi / 4 \times 1.1440^2 \times 9.8 \times 1.215 = 12.24$ (kN)

S: 安全率 1.20

$$R_v = \frac{1}{2} \times 2.185 \times 0.50 \times \tan^2 \left(45 - \frac{30.00}{2} \right)$$

$$\times \left\{ 10.20 \times (3.772^{-2} -2.343^{-2}) + 2 \times (20.00 -10.20) \times 1.000 \times (3.772 -2.343) \right\}$$

= 21.33(kN)

 $R_v + W - U = 21.33 + (62.13 + 17.78) - 12.24 = 89.00 (kN)$

$$\geq$$
 S·P_v = 1.20×-109.46 = -131.35 (kN)

よって、浮上に対して安全である。

1.7 沈下に対する検討

管の沈下に対する検討は式(16),(17)により行う。

$$\sigma_{rv} \geq S \cdot \sigma_{v} = S \cdot \frac{W+P_{v}-R_{v}}{A}$$
(16)

$$R_{v} = 1/2 \cdot w \cdot L \cdot \mu \cdot (H_{2}^{2} - H_{1}^{2}) \cdot \tan^{2}(45 - \phi/2) \qquad \cdots \cdots (17)$$

ここで、σ_{rv}: 管底面の地盤の許容支持力度 100.00 (kN/m²)

S: 安全率 1.20

σν: 管底面に加わる荷重強度

W: 管底面に加わる全荷重 W=W₁+W₂ (kN)

W1: 管上の埋戻し土による鉛直土圧

 $W_1 = w \cdot H_m \cdot A = 20.0 \times 2.485 \times 1.2499 = 62.13$ (kN)

W2: 曲管類の重量および管内水重

 $W_2 = 6.30+11.49 = 17.78$ (kN)

Hm: 地表面からの平均深さ 2.485 (m)

A: 管底面積

Pv: スラスト力の鉛直分力(下向き) 109.46 (kN)

R_v: 管側面の主働土圧による摩擦抵抗力 (kN)

w : 土の単位体積重量 20.00 (kN/m³)

L: 管側面の摩擦を受ける長さ 2×1.093=2.185 (m)

μ: 管側面と土の摩擦係数 0.500

H₁: 地表面から管頂面までの深さ 2.343 (m) H₂: 地表面から管底面までの深さ 3.772 (m)

φ: 土の内部摩擦角 30.0 (°)

管側面の主働土圧による摩擦抵抗力

$$R_v = \frac{1}{2} \times 20.00 \times 2.185 \times 0.500$$

$$\times$$
 (3.772 2 -2.343 2) \times tan 2 $\left(45 - \frac{30.0}{2}\right) = 31.82 (kN)$

管底面に加わる荷重強度

$$\sigma_{v} = \frac{62.13+17.78+109.46-31.82}{1.250} = 126.05(kN/m^{2})$$

安全性の照査

$$S \cdot \sigma_{v} = 1.20 \times 126.05 = 151.26 (kN/m2) > \sigma_{rv} = 100.00 (kN/m2)$$

よって、沈下に対して対策が必要である。

1.8 スラストブロックの計算

1.8.1 形状寸法図

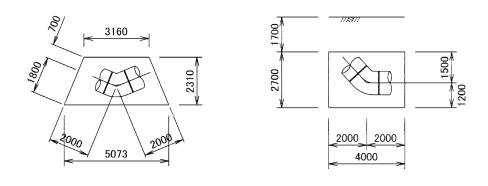


図-1.2 寸法図

1.8.2 スラストカ

水平方向スラストカ $P_h = 118.48$ (kN) 鉛直方向スラストカ P' = 118.48 (kN) 水平分力 $P_v = 45.34$ (kN) 鉛直分力 $P_v = 109.46$ (kN)

1.8.3 スラストブロック底面に加わる全荷重

	名 称	計算式	重量 (kN)
1	ブロック自重	$1/2 \times (3.160+5.073) \times 2.310 \times 2.700 \times 23.0$	590. 43
2	管の控除	$-1.028 \times (1.654 + 1.654 + 0.628) \times 23.0$	-93.04
3	埋戻し土 1	$1/2 \times (3.160+5.073) \times 2.310 \times 1.000 \times 20.00$	190. 16
4	埋戻し土 2	$1/2 \times (3.160+5.073) \times 2.310 \times 0.700 \times 10.20$	67. 89
5	管 重	5. 182×(1. 654+1. 654+0. 628)	20. 39
6	管内水重	0. 9642×9. 80×(1. 654+1. 654+0. 628)	37. 19
		合 計	W _s = 813.02

1.8.4 スラストブロック底面に加わる全荷重(沈下検討用)

	名 称	計算式	重量 (kN)				
1	ブロック自重	$1/2 \times (3.160+5.073) \times 2.310 \times 2.700 \times 23.0$	590. 43				
2	管の控除	$-1.028 \times (1.654 + 1.654 + 0.628) \times 23.0$	-93. 04				
3	埋戻し土 1	$1/2 \times (3.160+5.073) \times 2.310 \times 1.000 \times 20.00$	190. 16				
4	埋戻し土 2	$1/2 \times (3.160+5.073) \times 2.310 \times 0.700 \times 20.00$	133. 11				
5	管 重	5. 182×(1. 654+1. 654+0. 628)	20. 39				
6	管内水重	0. 9642×9. 80×(1. 654+1. 654+0. 628)	37. 19				
	合 計						

1.8.5 スラストブロックに働く浮力

	名 称	計 算 式	重量 (kN)
1	ブロック 1	$1/2 \times (3.160 + 5.073) \times 2.310 \times 2.700 \times 9.8$	251. 58
	合 計		U = 251.58

1.8.6 水平曲がりによるスラストブロックの滑動

管の水平曲がりによるスラストブロックの滑動は式(18)~(23)により照査する。

$$R_{h} = R_{h1} + R_{h2} \ge S \cdot P' \qquad \cdots (18)$$

$$R_{h1} = \mu \cdot (W_{s} - U) \qquad \cdots \cdots (19)$$

(地下水位が管底より低い場合)

$$R_{h2} = \frac{1}{2} \cdot K_{P} \cdot B_{b} \cdot w \cdot (H_{2}^{2} - H_{1}^{2}) \qquad \cdots \cdots (20)$$

(地下水位が管頂より高い場合)

$$R_{h2} \; = \; \frac{1}{2} \cdot K_{P} \cdot B_{b} \cdot \left\{ \; w' \; (H_{2}^{\; 2} \; -H_{1}^{\; 2} \;) + 2 \, (w - w' \;) \; H_{\; w} \; (H_{\; 2} - H_{\; 1} \;) \; \; \right\} \; \cdots \cdots (21)$$

(その他の場合)

$$R_{h2} = \frac{1}{2} \cdot K_{P} \cdot B_{b} \cdot \left\{ w \left(H_{2}^{2} - H_{1}^{2} \right) - \left(w - w' \right) \left(H_{2} - H_{w} \right)^{2} \right\}$$
(22)

$$K_{p} = \tan^{2}\left(45 + \frac{\phi}{2}\right) \qquad \qquad \cdots$$

ここで、R_h: 水平方向抵抗力 (kN)

R_{h1}: スラストブロック底面の摩擦抵抗力

Rh2: スラストブロック背面の受働土圧

118.48 (kN)

S: 安全率 1.50

μ: スラストブロックと土の摩擦係数 0.500

Ws: スラストブロック底面に加わる全荷重 813.02 (kN)

U: スラストブロックに働く浮力 251.58 (kN)

w: 土の単位体積重量 20.00 (kN/m³) w': 土の水中単位体積重量 10.20 (kN/m³)

B_s: スラストブロック背面の幅

5.073 (m)

H₁: 地表面からブロック頂面までの深さ 1.700 (m)

H2: 地表面からブロック底面までの深さ 4.400 (m)

H_w: 地表面から地下水面までの深さ 1.000 (m)

K_P: 受働土圧係数

φ: 土の内部摩擦角 30.0 (°)

 $R_{h1} = 0.500 \times (813.02-251.58) = 280.72 (kN)$

$$K_P = \tan^2\left(45 + \frac{30.00}{2}\right) = 3.000$$

$$R_{h2} = \frac{1}{2} \times 3.000 \times 5.073$$

$$\times \left\{ 10.20 \times (4.400^{2} - 1.700^{2}) + 2 \times (20.00 - 10.20) \times 1.000 \times (4.400 - 1.700) \right\}$$

= 1681.10(kN)

 $S \cdot P' = 1.50 \times 118.48 = 177.72 (kN) \le R_h = 280.72 + 1681.10 = 1961.82 (kN)$

よって、滑動に対して安全である。

1.8.7 鉛直曲がりによるスラストブロックの滑動

管の鉛直曲がりによるスラストブロックの滑動は式(24)~(29)により照査する。

$$R_{h} = R_{h1} + R_{h2} \ge S \cdot P_{h} \qquad \cdots \cdots (24)$$

$$R_{h1} = \mu \cdot (W_s - U) \qquad \cdots \cdots (25)$$

(地下水位が管底より低い場合)

$$R_{h2} = \frac{1}{2} \cdot K_{P} \cdot B_{b} \cdot w \cdot (H_{2}^{2} - H_{1}^{2}) \qquad \cdots \cdots (26)$$

(地下水位が管頂より高い場合)

$$R_{h2} = \frac{1}{2} \cdot K_{P} \cdot B_{b} \cdot \left\{ w' (H_{2}^{2} - H_{1}^{2}) + 2(w - w') H_{w} (H_{2} - H_{1}) \right\}$$
(27)

(その他の場合)

$$R_{h2} = \frac{1}{2} \cdot K_{P} \cdot B_{b} \cdot \left\{ w(H_{2}^{2} - H_{1}^{2}) - (w-w')(H_{2} - H_{w})^{2} \right\}$$
(28)

$$K_{p} = \tan^{2}\left(45 + \frac{\phi}{2}\right) \qquad \qquad \cdots$$

ここで、R_h: 水平方向抵抗力 (kN)

R_{h1}: スラストブロック底面の摩擦抵抗力

R_{h2}: スラストブロック背面の受働土圧 (kN)

45.34 (kN) Ph: スラスト力の水平分力

S: 安全率 1.50

μ: スラストブロックと土の摩擦係数 0.500

Ws: スラストブロック底面に加わる全荷重 813.02 (kN)

U: スラストブロックに働く浮力 251.58 (kN)

w: 土の単位体積重量 20.00 (kN/m³)

w': 土の水中単位体積重量 10.20 (kN/m³)

Bs: スラストブロック背面の幅 2.310 (m)

H₁: 地表面からブロック頂面までの深さ 1.700 (m)

H₂: 地表面からブロック底面までの深さ 4.400 (m)

H_w: 地表面から地下水面までの深さ 1.000 (m)

K_P: 受働土圧係数

φ: 土の内部摩擦角 30.0 (°)

 $R_{h1} = 0.500 \times (813.02-251.58) = 280.72 (kN)$

$$K_{p} = \tan^{2}\left(45 + \frac{30.00}{2}\right) = 3.000$$

$$R_{h2} = \frac{1}{2} \times 3.000 \times 2.310$$

$$\times \{ 10.20 \times (4.400^2 - 1.700^2) + 2 \times (20.00 - 10.20) \times 1.000 \times (4.400 - 1.700) \}$$

= 765.37(kN)

$${\rm S \cdot P}_{\rm h} \ = \ 1.\,50 \times 45.\,34 \ = \ 68.\,01\,(\rm kN) \ \le \ R_{\rm h} \ = \ 280.\,72 + 765.\,37 \ = \ 1046.\,09\,(\rm kN)$$

よって、滑動に対して安全である。

1.8.8 浮上に対する検討

スラストブロックの浮上に対する検討は式(30)~(33)により行う。

$$\mathbf{R}_{\mathbf{v}} + \mathbf{W}_{\mathbf{S}} - \mathbf{U} \; \geq \; \mathbf{S} \cdot \mathbf{P}_{\mathbf{v}} \qquad \qquad \cdots \cdots (30)$$

(地下水位が管底より低い場合)

$$R_{v} = \frac{1}{2} \cdot L \cdot \mu \cdot w \cdot (H_{2}^{2} - H_{1}^{2}) \cdot \tan^{2} \left(45 - \frac{\phi}{2}\right) \qquad \cdots \cdots (31)$$

(地下水位が管頂より高い場合)

$$R_{v} = \frac{1}{2} \cdot L \cdot \mu \cdot \tan^{2} \left(45 - \frac{\phi}{2} \right)$$

$$\cdot \left\{ \text{ w' (H } _2^2 \quad \text{-H } _1^2 \quad) + 2 \left(\text{w-w') H } _{\text{w}} \left(\text{H } _2 \text{-H } _1 \right) \quad \right\} \\ \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \left(32 \right)$$

(その他の場合)

$$R_{v} = \frac{1}{2} \cdot L \cdot \mu \cdot \tan^{2} \left(45 - \frac{\phi}{2} \right)$$

$$\left\{ \text{ w (H } \frac{2}{2} - \text{H } \frac{2}{1} \text{) - (w-w') (H }_{2} - \text{H }_{w} \text{) }^{2} \right\}$$
(33)

ここで、R_v: ブロック側面の主働土圧による摩擦抵抗力 (kN)

P_v: スラスト力の鉛直分力(上向き) -109.46 (kN)

w: 土の単位体積重量 20.0 (kN/m³)

w: 土の水中単位体積重量 10.2 (kN/m³)

L: ブロック側面の摩擦を受ける長さ

 μ: プロック側面と土の摩擦係数
 13.233 (m)
 μ: 地表面からず H₁: 地表面からブロック頂面までの深さ 1.700 (m)

H₂: 地表面からブロック底面までの深さ 4.400 (m)

H_w: 地表面から地下水面までの深さ 1.000 (m)

30.0 (°) φ: 土の内部摩擦角

Ws: ブロック底面に加わる全荷重 813.02 (kN) U: スラストブロックに働く浮力 251.58 (kN)

$$R_v = \frac{1}{2} \times 13.233 \times 0.50 \times tan^2 \left(45 - \frac{30.00}{2} \right)$$

$$\times \left\{\ 10.\ 20\times (4.\ 400^{\ 2}\ -1.\ 700^{\ 2}\) + 2\times (20.\ 00-10.\ 20)\times 1.\ 000\times (4.\ 400-1.\ 700)\ \ \right\}$$

= 243.61(kN)

$$R_v + W_s - U = 243.61 + 813.02 - 251.58 = 805.05 (kN)$$

$$\geq$$
S·P_v = 1.20×-109.46 = -131.35(kN)

よって、浮上に対して安全である。

1.8.9 沈下に対する検討

スラストブロックの沈下に対する検討は式(34)により行う。

$$\sigma_{rv} \geq S \cdot \sigma_{v} = S \cdot \frac{W_{S} + P_{v} - R_{v}}{A} \qquad \cdots \cdots (34)$$

ここで、 σ_{rv} : スラストブロック底面の地盤の許容支持力度 100.00 (kN/m²)

1.00

 σ_{v} : スラストブロック底面に加わる荷重強度 (kN/m^{2})

W_s: スラストブロック底面に加わる全荷重 878.24 (kN)

A : スラストブロックの底面積 9.508 (m^2)

Pv: スラスト力の鉛直分力 109.46 (kN)

R_v: ブロック側面の主働土圧による摩擦抵抗力 (kN)

w: 土の単位体積重量 20.00 (kN/m³)

L: ブロック側面の摩擦を受ける長さ

(ブロックの周長) 13.233 (m)

μ: ブロック側面と土の摩擦係数0.50

H₁: 地表面からブロック頂面までの深さ 1.700 (m)

H₂: 地表面からブロック底面までの深さ 4.400 (m)

φ: 土の内部摩擦角 30.0 (°)

$$R_{v} = \frac{1}{2} \cdot w \cdot L \cdot \mu \cdot (H_{\frac{2}{2}}^{2} - H_{\frac{1}{1}}^{2}) \cdot \tan^{2} \left(45 - \frac{\phi}{2} \right)$$

$$=\frac{1}{2}\times20.00\times13.233\times0.500\times(4.400^{2}-1.700^{2})\times\tan^{2}\left(45-\frac{30.0}{2}\right)$$

= 363.24(kN)

$$\sigma_{v} = \frac{W_{s} + P_{v} - R_{v}}{A}$$

=
$$\frac{878.24+109.46-363.24}{9.508}$$
 = 65.68(kN/m²)

S ·
$$\sigma_{_{_{\mathrm{V}}}}$$
 = 1.00×65.68 = 65.68(kN/m 2) \leq $\sigma_{_{_{\mathrm{TV}}}}$ = 100.00(kN/m 2)

よって、沈下に対して安全である。

2 新規断面2

2.1 設計条件

準拠指針: 水道施設設計指針 2012 平成24年7月 日本水道協会

スラスト形式: 分岐部

上流側の管種: ダクタイル鋳鉄管 φ 1100 (D1, K形)

外径 D_c=1144.0 (mm) , 管厚 T=18.0 (mm)

下流側の管種: ダクタイル鋳鉄管 φ1100(D1, K形)

外径 Dc=1144.0 (mm) , 管厚 T=18.0 (mm)

分岐管の管種: ダクタイル鋳鉄管 φ 800 (D1, K形)

外径 D_c=836.0 (mm) , 管厚 T=13.5 (mm)

分岐角度: 45.0 (°)

地表面から管中心までの深さ: 3.200 (m) 地下水位 G.L. - 1.000 (m)

設計水圧: H = 0.300 (MPa) = 300.0 (kN/m²)

上流側流量: $Q_1 = 0.450 \, (m^3/s)$ 下流側流量: $Q_2 = 0.200 \, (m^3/s)$ 分岐管流量: $Q_3 = 0.250 \, (m^3/s)$

土の内部摩擦角: 30.0 (°)

単位体積重量 埋戻し土: 20.00 (kN/m³)

地下水: 9.80 (kN/m²) 管内水: 9.80 (kN/m²) コンクリート: 23.00 (kN/m²)

2.2 設計断面

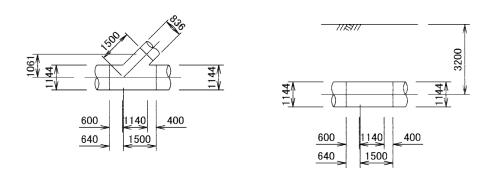


図-2.1 寸法図

2.3 スラストカの算出

分岐管のスラスト力は式(35),(36)により求める。

$$P_{x} = \frac{w_{0}}{g} \cdot \left\{ Q_{1} \cdot V_{1} - (Q_{2} \cdot V_{2} + Q_{3} \cdot V_{3} \cdot \cos \theta) \right\}$$

$$+H \cdot \left\{ A_{1} - (A_{2} + A_{3} \cdot \cos \theta) \right\}$$

$$P_{y} = \frac{-w_{0} \cdot Q_{3}}{g} \cdot V_{3} \cdot \sin \theta - A_{3} \cdot H \cdot \sin \theta$$
.....(36)

ここで、Px, Py: X, Y各方向のスラスト力 (kN)

wo: 管内水の単重 9.8 (kN/m³)

H: 設計水圧 300.0 (kN/m²)

Q1, V1, A1: 分岐部上流側の流量、流速および流水面積

 $A_1 = \pi/4 \times 1.1080^2 = 0.96421 \text{ (m}^2\text{)}$

 Q_{l} = 0.450 (m^3/s) , V_{l} = $\text{Q}_{\text{l}}/\text{A}_{\text{l}}$ = 0.467 (m/s)

Q2, V2, A2: 分岐部下流側の流量、流速および流水面積

 $A_2 = \pi/4 \times 1.1080^2 = 0.96421 \text{ (m}^2\text{)}$

 Q_2 = 0.200 (m^3/s) , V_2 = Q_2/A_2 = 0.207 (m/s)

Q3, V3, A3: 分岐管の流量、流速および流水面積

 $A_3 = \pi/4 \times 0.8090^2 = 0.51403 \text{ (m}^2\text{)}$

 Q_3 = 0.250 (\mbox{m}^3/\mbox{s}) , V_3 = Q_3/\mbox{A}_3 = 0.486 (\mbox{m}/\mbox{s})

θ: 分岐角度 45.0 (°)

g: 重力の加速度 9.8 (m/s²)

$$P_{x} = \frac{9.8}{9.8} \times \{0.450 \times 0.467 - (0.200 \times 0.207 + 0.250 \times 0.486 \times \cos 45.0)\}$$

$$+300.0 \times \{0.9642 - (0.9642 + 0.5140 \times \cos 45.0)\} = -108.96 (kN)$$

$$P_y = -\frac{9.8 \times 0.250}{9.8} \times 0.486 \times \sin 45.0 - 0.5140 \times 300.0 \times \sin 45.0 = -109.13 (kN)$$

2.4 滑動に対する検討

管の滑動に対する検討は式(37)~(41)により行う。

$$R_h \ge S \cdot P$$
(37)

(地下水位が管底より低い場合)

$$R_{h} = F \cdot \frac{1}{2} \cdot K_{P} \cdot B_{b} \cdot w \cdot (H_{2}^{2} - H_{1}^{2}) \qquad (38)$$

(地下水位が管頂より高い場合)

(その他の場合)

$$R_{h} = F \cdot \frac{1}{2} \cdot K_{p} \cdot B_{b} \cdot \left\{ w(H_{2}^{2} - H_{1}^{2}) - (w-w')(H_{2} - H_{w})^{2} \right\}$$
(40)

$$K_p = \tan^2\left(45 + \frac{\phi}{2}\right)$$
(41)

ここで、

Rh: 水平方向抵抗力(管背面の受働土圧、X方向:Rhx、Y方向:Rhy) (kN)

P: 分岐部に作用するスラストカ

X方向:P_x= 108.96 (kN) , Y方向:P_y= 109.13 (kN)

: 安全率 1.5

F: 曲面の受働土圧の補正係数 0.65

w: 土の単位体積重量 20.00 (kN/m³)

w: 土の水中単位体積重量 10.20 (kN/m³)

B_b: 管背面の幅

X方向: $B_{\text{bx}}\text{= }1.928$ (m) , Y方向: $B_{\text{by}}\text{= }2.140$ (m)

H₁: 地表面から管頂面までの深さ 2.628 (m)

H₂: 地表面から管底面までの深さ 3.772 (m)

H_w: 地下水面までの深さ 1.000 (m)

K_P: 受働土圧係数

φ: 土の内部摩擦角 30.0 (°)

$$K_P = \tan^2\left(45 + \frac{30.00}{2}\right) = 3.0000$$

$$R_{hx} = 0.65 \times \frac{1}{2} \times 3.000 \times 1.928$$

$$\times$$
 { 10. 20 × (3. 772 2 -2. 628 2) +2 × (20. 00-10. 20) × 1. 000 × (3. 772-2. 628) }

= 182.56(kN)

$$R_{hy} = 0.65 \times \frac{1}{2} \times 3.000 \times 2.140$$

$$\times \left\{ 10.20 \times (3.772^{-2} - 2.628^{-2}) + 2 \times (20.00 - 10.20) \times 1.000 \times (3.772 - 2.628) \right\}$$

= 202.60(kN)

$$S \cdot P_x = 1.50 \times 108.96 = 163.44 (kN) \le R_{hx} = 182.56 (kN)$$

$$S \cdot P_y = 1.50 \times 109.13 = 163.69 (kN) \le R_{hy} = 202.60 (kN)$$

よって、滑動に対して安全である。

3 新規断面3

3.1 設計条件

準拠指針: 水道施設設計指針 2012 平成24年7月 日本水道協会

スラスト形式: 弁栓部

管 種: ダクタイル鋳鉄管 φ1100(D1, K形)

外径 D_c =1144.0 (mm) ,管厚 T=18.0 (mm) 計算管厚 t=T/1.1=18.0/1.1=16.3 (mm)

(基準書 p. 300, t+1≥10mmm, φ800以上より)

設計水圧:H = 0.300 (MPa) = 300.0 (kN/m²)

管体の軸方向許容圧縮応力度: $\sigma_a = 168.0 \text{ (N/mm²)}$ コンクリートの許容押抜きせん断応力度: $\tau_a = 0.25 \text{ (N/mm²)}$ スティフナーの許容せん断応力度: $\tau_{ta} = 0.3 \text{ (N/mm²)}$

3.2 スラストカの算出

弁栓部のスラスト力は式(42)により求める。

 $P_h = H \cdot a = 300.0 \times 1.02788 = 308.36 (kN)$ (42)

ここで、P_h: 弁栓部に作用するスラストカ (kN) H: 設計水圧 300.0 (kN/m²)

a: 設計水圧が作用する断面積 π/4×1.1440² = 1.02788 (m²)

3.3 管体応力の検討

弁栓部のスラスト力による管体応力の検討は式(43)により行う。

$$\sigma = \frac{P_h}{A_p} \le \sigma_a (N/mm^2) \qquad \cdots (43)$$

ここで、 σ : 管体の軸方向圧縮応力度 (N/mm^2)

 P_h : 弁栓部に作用するスラストカ 308.36 (kN) = 308363.7 (N)

Ap: 管の断面積

 $A_p = \pi/4 \times (1.1440^2 - 1.1080^2) = 0.06367 \text{ (m}^2) = 63673.8 \text{ (mm}^2)$

 σ a: 管体の許容軸方向圧縮応力度 168.0 (N/mm²)

$$\sigma = \frac{308363.7}{63673.8} = 4.84(N/mm2) \le \sigma_a$$

よって、管体の軸方向圧縮応力度は許容値を満足している。

3.4 スティフナー固定部の照査

弁栓部のスティフナー固定部の押抜きせん断応力度は式(44)により照査する。

$$\tau_{p} = \frac{P_{h}}{b_{p} \cdot d} \leq \tau_{a} \qquad \cdots \cdots (44)$$

ここで、 τ_p : 押抜きせん断応力度 (N/mm^2)

Ph: 弁栓部に作用するスラスト力 308.36 (kN) = 308363.7 (N)

 b_p : スティフナー周長 450.0 (mm) d: せん断力を受けるコンクリート厚 300.0 (mm) τ_a : コンクリートの許容押抜きせん断応力度 0.3 (N/mm²)

 $\tau_{p} = \frac{308363.7}{450.0 \times 300.0} = 2.28 > \tau_{a}$

よって、スティフナー固定部の押抜きせん断応力度は許容値を満足していない。

3.5 スティフナー溶接部の検討

弁栓部のスティフナー溶接部におけるせん断応力度は式(45)により照査する。

$$\tau_{t} = \frac{P_{h}}{A_{t}} \leq \tau_{ta} (N/mm^{2}) \qquad \cdots (45)$$

ここで、τ: スティフナーと管体との溶接部におけるせん断応力度 (N/mm²)

Ph: 弁栓部に作用するスラスト力 308.36 (kN) = 308363.7 (N)

At: スティフナーと管体との溶接面積

 $A_t = \pi \cdot D_c \cdot t_s = \pi \times 1144.0 \times 45.0 = 161729.2 \text{ (mm}^2)$

t_s: スティフナー厚 45.0 (mm)

τ_{ta}: スティフナーの許容せん断応力度 0.3 (N/mm²)

$$\tau_{\rm t} = \frac{308363.7}{161729.2} = 1.91 (N/mm^2) > \tau_{\rm ta}$$

よって、スティフナー溶接部におけるせん断応力度は許容値を満足していない。

3.6 一体化長さの計算

安全率50を考慮した必要一体化長さは式(46)で求める。

$$L \ge \frac{S_0 \cdot P}{\mu \cdot w \cdot H_c \cdot \pi \cdot D_c} \cdots (46)$$

ここで、L: 必要一体化長さ

So:安全率1.50P:弁栓部に作用するスラストカ308.4 (kN) μ :摩擦係数0.50

w: 管心位置の土の単位体積重量 10.20 (kN/m³) 管心が地下水位より上なら土の単位体積重量 下なら土の水中単位体積重量とする。

 γ:
 土の単位体積重量
 20.00 (kN/m³)

 γ':
 土の水中単位体積重量
 10.20 (kN/m³)

 H_c:
 屈曲部の深さ
 3.200 (m)

 D_c:
 管の外径
 1.1440 (m)

$$L = \frac{1.50 \times 308.36}{0.50 \times 10.20 \times 3.200 \times \pi \times 1.144} = 7.886 \, (\text{m})$$

よって、所要一体化長 L=7.89 (m) また、離脱防止金具の使用個数は片側で2個となる。

4 新規断面4

4.1 設計条件

準拠指針: 水道施設設計指針 2012 平成24年7月 日本水道協会

スラスト形式: T字管

上流側の管種: ダクタイル鋳鉄管 φ 1100 (D1, K形)

外径 D_c=1144.0 (mm) , 管厚 T=18.0 (mm)

分岐管の管種: ダクタイル鋳鉄管 φ 1100 (D1, K形)

外径 D_c=1144.0 (mm) , 管厚 T=18.0 (mm)

地表面から管中心までの深さ: 4.000 (m) 地下水位 G.L. - 1.200 (m)

地下水位 G.L. - 1.200 (m) 設計水圧: H = 0.300 (MPa) = 300.0 (kN/m²)

土の内部摩擦角: 30.0 (°)

単位体積重量 埋戻し土: 20.00 (kN/m³)

地下水: 9.80 (kN/m³) 管内水: 9.80 (kN/m³) コンクリート: 23.00 (kN/m³)

4.2 設計断面

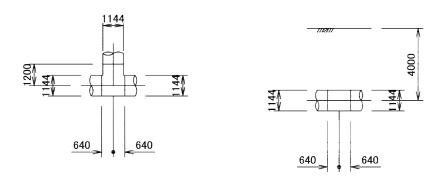


図-4.1 寸法図

4.3 スラストカの算出

T字管のスラスト力は式(47)により求める。

 $P_h = H \cdot a = 300.0 \times 1.02788 = 308.36 (kN)$ (47)

ここで、Ph: T字管に作用するスラスト力 (kN)

H: 設計水圧 300.0 (kN/m²)

a: 設計水圧が作用する断面積 $\pi/4 \times 1.1440^2$ = 1.02788 (m²)

4.4 滑動に対する検討

管の滑動に対する検討は式(48)~(52)により行う。

$$R_h \ge S \cdot P$$
(48)

(地下水位が管底より低い場合)

$$R_{h} = F \cdot \frac{1}{2} \cdot K_{P} \cdot B_{b} \cdot w \cdot (H_{2}^{2} - H_{1}^{2}) \qquad \cdots (49)$$

(地下水位が管頂より高い場合)

(その他の場合)

$$K_{p} = \tan^{2}\left(45 + \frac{\phi}{2}\right) \qquad \cdots \cdots (52)$$

ここで、

Rh: 水平方向抵抗力(管背面の受働土圧)(kN)

P: 分岐部に作用するスラストカ 308.36 (kN)

5: 安全率 1.50

F: 曲面の受働土圧の補正係数 0.65

w: 土の単位体積重量 20.00 (kN/m³)

w: 土の水中単位体積重量 10.20 (kN/m³)

B_b: 管背面の幅 1.280 (m)

H₁: 地表面から管頂面までの深さ 3.428 (m)

H₂: 地表面から管底面までの深さ 4.572 (m)

H_w: 地下水面までの深さ 1.200 (m)

K_P: 受働土圧係数

φ: 土の内部摩擦角 30.0 (°)

$$K_P = \tan^2\left(45 + \frac{30.00}{2}\right) = 3.0000$$

$$R_h = 0.65 \times \frac{1}{2} \times 3.000 \times 1.280$$

$$\times \{ 10.20 \times (4.572^2 - 3.428^2) + 2 \times (20.00 - 10.20) \times 1.200 \times (4.572 - 3.428) \}$$

= 150.08(kN)

$$S \cdot P = 1.50 \times 308.36 = 462.55 (kN) > R_h = 150.08 (kN)$$

よって、滑動に対して対策が必要である。

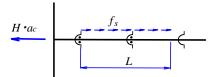


図-4.2 記号説明図

4.5 一体化長さの計算

4.5.1 計算式

周面摩擦力による合力F_s(kN)は式(53)で求めることができる。

 $F_s = L \cdot f_s = L \cdot \mu \cdot w \cdot H_c \cdot \pi \cdot D_c$

ここで、 μ : 摩擦係数 0.5

w: 管心位置の土の単位体積重量 10.20 (kN/m³) 管心が地下水位より上なら土の単位体積重量 下なら土の水中単位体積重量とする。

 γ:
 土の単位体積重量
 20.00 (kN/m³)

 γ':
 土の水中単位体積重量
 10.20 (kN/m³)

 H_c:
 屈曲部の深さ
 4.000 (m)

 D_c:
 管の外径
 1.1440 (m)

力のつり合いを考え、安全率50を考慮すると次式が成り立つ。

$$\label{eq:harmonic} \left. \mathbf{H} \cdot \mathbf{a} \right|_{\mathbf{C}} \; \leq \; \frac{\mathbf{F}_{\mathbf{S}}}{\mathbf{S}_{\mathbf{0}}} \; = \; \frac{1}{\mathbf{S}_{\mathbf{0}}} . \, \\ \mathbf{L} \cdot \boldsymbol{\mu} \; \cdot \mathbf{w} \cdot \mathbf{H}_{\mathbf{C}} \cdot \boldsymbol{\pi} \; \cdot \mathbf{D}_{\mathbf{C}}$$

H : 設計水圧 300.000 (kN/m²)

a。: 設計水圧が作用する範囲の断面積 (m²)

 $a_c = \pi / 4 \times D_c^2$

前式を変形し、Lについて整理すると式(54)のようになる。

$$L \ge \frac{S_0 \cdot H \cdot D_c}{4 \mu \cdot w \cdot H_c} \cdots (54)$$

· · · · · · (53)

4.5.2 一体化長さの算出

$$L = \frac{1.50 \times 300.0 \times 1.144}{4 \times 0.50 \times 10.20 \times 4.000} = 6.309 \, (m)$$

よって、所要一体化長 L=6.31 (m)

また、離脱防止金具の使用個数は片側で2個となる。

5 新規断面5

5.1 設計条件

準拠指針: 水道施設設計指針 2012 平成24年7月 日本水道協会

スラスト形式: 片落ち部

上流側の管種: ダクタイル鋳鉄管 φ 1100 (D1, K形)

外径 D_c=1144.0 (mm) , 管厚 T=18.0 (mm)

下流側の管種: ダクタイル鋳鉄管φ600(D1, K形)

外径 D_c=630.8 (mm) , 管厚 T=11.0 (mm)

地表面から管中心までの深さ: 1.600 (m) 地下水位 G.L. - 1.000 (m)

設計水圧: H = 0.300 (MPa) = 300.0 (kN/m²)

土の内部摩擦角: 30.0 (°)

単位体積重量 埋戻し土: 20.00 (kN/m³)

地下水: 9.80 (kN/m³) 管内水: 9.80 (kN/m³) コンクリート: 23.00 (kN/m³)

5.2 設計断面

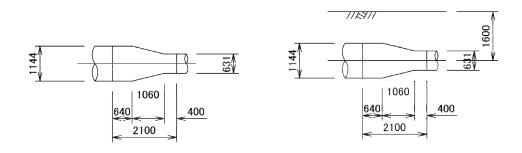


図-5.1 寸法図

5.3 スラストカの算出

片落管のスラスト力は式(55)により求める。

 $P = H \cdot (A_{c} - A_{c}) = 300.0 \times (1.028 - 0.313) = 214.61 (kN)$ (55)

ここで、P: 片落管に作用するスラストカ (kN)

H: 設計水圧 300.0 (kN/m²)

A_c: 上流側の管外径断面積

 $A_c = \pi/4 \times 1.1440^2 = 1.02788 \text{ (m}^2\text{)}$

a_c: 下流側の管外径断面積

 a_c = $\pi/4\!\times\!0.6308^2$ = 0.31252 (m²)

5.4 滑動に対する検討

管の滑動に対する検討は式(56)~(60)により行う。

$$R_h \ge S \cdot P$$
(56)

(地下水位が管底より低い場合)

$$R_{h} = F \cdot \frac{1}{2} \cdot K_{P} \cdot B_{b} \cdot w \cdot (H_{2}^{2} - H_{1}^{2}) \qquad \cdots (57)$$

(地下水位が管頂より高い場合)

(その他の場合)

$$R_{h} = F \cdot \frac{1}{2} \cdot K_{p} \cdot B_{b} \cdot \left\{ w \left(H_{2}^{2} - H_{1}^{2} \right) - \left(w - w' \right) \left(H_{2} - H_{w} \right)^{2} \right\}$$
(59)

$$K_{p} = \tan^{2}\left(45 + \frac{\phi}{2}\right) \qquad \cdots \cdots (60)$$

ここで、R_b: 水平方向抵抗力(管背面の受働土圧)(kN)

P: 片落部に作用するスラストカ 214.61 (kN)

S: 安全率 1.5

F: 曲面の受働土圧の補正係数 0.65

w: 土の単位体積重量 20.00 (kN/m³)

w: 土の水中単位体積重量 10.20 (kN/m³)

B_b: 管背面の幅(管外径) 1.1440 (m)

 H_1 : 地表面から管頂面までの深さ 1.028 (m) H_2 : 地表面から管底面までの深さ 2.172 (m)

Hw: 地下水面までの深さ 1.000 (m)

K_P: 受働土圧係数

φ: 土の内部摩擦角 30.0 (°)

$$K_{p} = \tan^{2}\left(45 + \frac{30.00}{2}\right) = 3.0000$$

$$R_h = 0.65 \times \frac{1}{2} \times 3.000 \times 1.144$$

$$\times \left\{ 10.20 \times (2.172^{-2} - 1.028^{-2}) + 2 \times (20.00 - 10.20) \times 1.000 \times (2.172 - 1.028) \right\}$$

= 66.66 (kN)

$$S \cdot P = 1.50 \times 214.61 = 321.91 (kN) > R_h = 66.66 (kN)$$

よって、滑動に対して対策が必要である。

5.5 一体化長さの計算

安全率Soを考慮した必要一体化長さは式(61)で求める。

$$L \ge \frac{S_0 \cdot P}{\mu \cdot w \cdot H_c \cdot \pi \cdot D_c} \cdots (61)$$

ここで、L: 必要一体化長さ

 S_0 : 安全率 1.50 P: 片落管に作用するスラストカ 214.6 (kN) μ : 摩擦係数 0.50

w: 管心位置の土の単位体積重量 10.20 (kN/m³) 管心が地下水位より上なら土の単位体積重量 下なら土の水中単位体積重量とする。

 γ:
 土の単位体積重量
 20.00 (kN/m³)

 γ':
 土の水中単位体積重量
 10.20 (kN/m³)

 H_c:
 屈曲部の深さ
 1.600 (m)

 D_c:
 管の外径
 1.1440 (m)

$$L = \frac{1.50 \times 214.61}{0.50 \times 10.20 \times 1.600 \times \pi \times 1.144} = 10.977 \, (m)$$

よって、所要一体化長 L=10.98 (m) また、離脱防止金具の使用個数は片側で5個となる。

目 次

1	屈曲部の検討
_	1.1 使用管種 1.2 スラスト力の検討
	1.2 スラスト力の検討
	1.3 スラスト対策工の設計
9	分岐部の検討
4	2.1 使用管種
	2.2 スラスト力の検討
0	片落ち部の検討
3	月 路 り
	3.2 スラスト対策工の設計
	弁栓部の検討
5	T字管の検討
	5.1 使用管種
	5.2 スラスト力の検討

1 屈曲部の検討

1.1 使用管種

断面名	使用管種	水平屈曲角(°)	鉛直屈曲角(°)
新規断面1	ダクタイル鋳鉄管φ1100(D1, K形)	45.0	45. 0

1.2 スラストカの検討

	滑動の検討(水平曲り) (kN)			滑動の検討(鉛直曲り) (kN)			浮上の検討 (kN)			沈下の			
断面名	スラストカ		水平方向	スラスト力		水平方向	スラストカ		抵抗力	荷重強度		許容	判定
別田石	$P_{\rm h}$		抵抗力	$P_{\rm h}$		抵抗力	$P_{\rm v}$			σ ν		支持力度	刊足
	S.P _h		$R_{\rm h}$	S-P _h		$R_{\rm h}$	$S \cdot P_v$		R_v +W $-$ U	S· σ _v		$\sigma_{\rm rv}$	
龙C+F MC 云: 1	118. 48			45. 34			-109. 46			126.05			NG
新規断面1	177.72	>	137. 01	68. 01	≦	130.66	-131.35	≦	89.00	151. 26	>	100.00	NG

ここで、S:安全率 滑動に対してS=1.50、浮上に対してS=1.20、沈下に対してS=1.20

1.3 スラスト対策工の設計

地 石 夕	***	滑動の検討 (水平曲り) (kN)			滑動の検討 (鉛直曲り) (kN)			浮上に対する 検討 (kN)			沈下に対する 検討 (kN/m²)			判定
	断面名 対策工			Rh	$\begin{array}{c} P_h \\ S {\cdot} P_h \end{array}$		$R_{\rm h}$	P _v S⋅P _v		R _v +W-U	σ _v S· σ _v		σ _{rv}	刊化
新規断面1	スラスト・ブロック	118. 48 177. 72	≦	1961. 82	45. 34 68. 01	\leq	1046. 09	-109. 46 -131. 35	≦	805. 05	65. 68 65. 68	≦	100.00	OK

ここで、S:安全率 滑動に対してS=1.50、浮上に対してS=1.20、沈下に対してS=1.00

2 分岐部の検討

2.1 使用管種

断面名	上流側管種	下流側管種	分岐管管種	分岐角度(°)	
#C+B#C=C0	ダクタイル鋳鉄管	ダクタイル鋳鉄管	ダクタイル鋳鉄管	45. 0	
新規断面2	φ1100(D1, K形)	φ 1100 (D1, K形)	φ800 (D1, K形)		

2.2 スラストカの検討

		滑動に対する検討(滑動に対する検討(Y方向) (kN)						
断面名	スラストカ			抵抗力	スラスト力			抵抗力	判定
	F_x	$S \cdot F_x$		$R_{\rm h}$	Fy	S • F _y		$R_{\rm h}$	
新規断面2	108.96	163. 44	≦	182. 56	109. 13	163. 69	\leq	202.60	OK

ここで、S:安全率 滑動に対してS=1.50

3 片落ち部の検討

3.1 スラストカの検討

			滑動に対する検討 (kN)					
断面名	上流側管種	下流側管種	スラン	ストカ		水平方向抵	Mail 44	
			F _x	S • F _x		抗力 R _h	判定	
新規断面5	ダクタイル鋳鉄管	ダクタイル鋳鉄管	014.61	201 01	,	cc cc	NC	
 	φ1100(D1, K形)	φ 600 (D1, K形)	214. 61	321. 91		66. 66	NG	

3.2 スラスト対策工の設計

			滑動に対する検討	寸(kN)		沈下の検討(kN/m²)				
断面名	断面名 対策工		ストカ		水平方向抵	荷重	強度		許容支持力	判定
	刈泉上	F_x	$S \cdot F_x$		抗力 R _h	σν	S • σ v		度 σ _{rv}	
新規断面5	必要一体化長 10.98 (m)									

4 弁栓部の検討

her are by		管体応力			コンクリートの 押し抜きせん断応力度			スティフナー溶接部の せん断応力度			和中	所要 一体化
断面名	管種	σ (N/mm²)		σ τ a (N/mm^2)	$ au_{p}$ (N/mm ²)		$ au_{a}$ (N/mm ²)	$ au_{\mathrm{t}}$ (N/mm ²)		$ au_{\mathrm{ta}}$ (N/mm ²)	■ 判定	長さ (m)
新規断面3	ダクタイル鋳鉄管 φ1100(D1, K形)	4. 84	≦	168. 00	2. 28	>	0. 25	1. 91	^	0.30	NG	7. 886

5 T字管の検討

5.1 使用管種

断面名	本管の管種	枝管の管種				
₩C+E ₩C-75 4	ダクタイル鋳鉄管	ダクタイル鋳鉄管				
新規断面4	φ1100(D1, K形)	φ1100(D1, K形)				

5.2 スラストカの検討

		滑動に対する検	討(kN)				
断面名	スラストカ			抵抗力	判定	対策工		
	F _x	S • F _x		$R_{\rm h}$				
新規断面4	308. 36	462.55	>	150. 08	NG	枝管側一体化長 6.309 (m)		

ここで、S:安全率 滑動に対してS=1.50